Vesicular Release Statistics and Unitary Postsynaptic Current at Single GABAergic Synapses
نویسندگان
چکیده
The existence of vesicular docking sites in central synapses is supported by morphological and biochemical evidence, but their functional role remains elusive. To investigate this role we have studied single depressing GABAergic synapses where multivesicular release and postsynaptic receptor saturation have been documented. We used failure/success patterns to estimate the number of vesicular docking sites, which varied from one to six among synapses. Variations of docking site numbers account for differences in release probability, as well as in the amplitude and decay kinetics of unitary postsynaptic currents. Upon repetitive stimulation, decreasing docking site occupancy likewise accounts for changes both in presynaptic and postsynaptic parameters. Finally steady-state docking site occupancy during train stimulations can be modulated by applying subthreshold presynaptic conditioning potential steps. The results suggest that differences in docking site numbers determine intersynaptic variability and that docking site occupancy is a key parameter controlling single synapse signaling.
منابع مشابه
Counting Vesicular Release Events Reveals Binomial Release Statistics at Single Glutamatergic Synapses.
UNLABELLED Many central glutamatergic synapses contain a single presynaptic active zone and a single postsynaptic density. However, the basic functional properties of such "simple synapses" remain unclear. One important step toward understanding simple synapse function is to analyze the number of synaptic vesicles released in such structures per action potential, but this goal has remained elus...
متن کاملRelease probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses.
The amount of neurotransmitter released after the arrival of an action potential affects the strength and the trial-to-trial variability of postsynaptic responses. Most studies examining the dependence of synaptic neurotransmitter concentration on the release probability (P(r)) have focused on glutamatergic synapses. Here we asked whether univesicular or multivesicular release characterizes tra...
متن کاملCo-release of glutamate and GABA from single vesicles in GABAergic neurons exogenously expressing VGLUT3
The identity of the vesicle neurotransmitter transporter expressed by a neuron largely corresponds with the primary neurotransmitter that cell releases. However, the vesicular glutamate transporter subtype 3 (VGLUT3) is mainly expressed in non-glutamatergic neurons, including cholinergic, serotonergic, or GABAergic neurons. Though a functional role for glutamate release from these non-glutamate...
متن کاملGephyrin regulates GABAergic and glutamatergic synaptic transmission in hippocampal cell cultures.
Gephyrin is a scaffold protein essential for stabilizing glycine and GABA(A) receptors at inhibitory synapses. Here, recombinant intrabodies against gephyrin (scFv-gephyrin) were used to assess whether this protein exerts a transynaptic action on GABA and glutamate release. Pair recordings from interconnected hippocampal cells in culture revealed a reduced probability of GABA release in scFv-ge...
متن کاملA Kainate Receptor Increases the Efficacy of GABAergic Synapses
Brain functions are based on the dynamic interaction of excitatory and inhibitory inputs. Spillover of glutamate from excitatory synapses may diffuse to and modulate nearby inhibitory synapses. By recording unitary inhibitory postsynaptic currents (uIPSCs) from cell pairs in CA1 of the hippocampus, we demonstrated that low concentrations of Kainate receptor (KAR) agonists increased the success ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 85 شماره
صفحات -
تاریخ انتشار 2015